Saturday, September 19, 2020

Beyond "AI" – toward a new engineering discipline

Another bump to the top, this time because I'm thinking about Facebook, the future of social media, and the need for new institutional actors to counter-act both for-profit social media companies and the government. AI in the form of Intelligent Infrastructure, see below, surely has a role to play here.

* * * * *
 
I'm bumping this to the top of the queue in response to remarks by Ted Underwood on Twitter and by Willard McCarty in the Humanist Discussion Group.

* * * * *

Mark Liberman at Language Log posted a link to an excellent article by Michael Jordan, "Artificial Intelligence — The Revolution Hasn’t Happened Yet", Medium 4/19/2018. Here are some passages.
Whether or not we come to understand “intelligence” any time soon, we do have a major challenge on our hands in bringing together computers and humans in ways that enhance human life. While this challenge is viewed by some as subservient to the creation of “artificial intelligence,” it can also be viewed more prosaically — but with no less reverence — as the creation of a new branch of engineering. Much like civil engineering and chemical engineering in decades past, this new discipline aims to corral the power of a few key ideas, bringing new resources and capabilities to people, and doing so safely. Whereas civil engineering and chemical engineering were built on physics and chemistry, this new engineering discipline will be built on ideas that the preceding century gave substance to — ideas such as “information,” “algorithm,” “data,” “uncertainty,” “computing,” “inference,” and “optimization.” Moreover, since much of the focus of the new discipline will be on data from and about humans, its development will require perspectives from the social sciences and humanities.

While the building blocks have begun to emerge, the principles for putting these blocks together have not yet emerged, and so the blocks are currently being put together in ad-hoc ways.
He goes on to observe that the issues involved are too often discussed under the rubric of "AI", which has meant various things at various times. The phrase was coined in the 1950s to denote the creation of computing technology possessing a human-like mind. Jordan calls this "human-imitative AI" and notes that it was largely an academic enterprise whose objective, the creation of "high-level reasoning and thought", remains elusive. In contrast:
The developments which are now being called “AI” arose mostly in the engineering fields associated with low-level pattern recognition and movement control, and in the field of statistics — the discipline focused on finding patterns in data and on making well-founded predictions, tests of hypotheses and decisions.
This work is often packaged as machine learning (ML).
Since the 1960s much progress has been made, but it has arguably not come about from the pursuit of human-imitative AI. [...] Although not visible to the general public, research and systems-building in areas such as document retrieval, text classification, fraud detection, recommendation systems, personalized search, social network analysis, planning, diagnostics and A/B testing have been a major success — these are the advances that have powered companies such as Google, Netflix, Facebook and Amazon.

One could simply agree to refer to all of this as “AI,” and indeed that is what appears to have happened. Such labeling may come as a surprise to optimization or statistics researchers, who wake up to find themselves suddenly referred to as “AI researchers.” But labeling of researchers aside, the bigger problem is that the use of this single, ill-defined acronym prevents a clear understanding of the range of intellectual and commercial issues at play.
He then goes on to coin two more terms, "Intelligence Augmentation" (IA) and "Intelligent Infrastructure" (II). In the first
...computation and data are used to create services that augment human intelligence and creativity. A search engine can be viewed as an example of IA (it augments human memory and factual knowledge), as can natural language translation (it augments the ability of a human to communicate). Computing-based generation of sounds and images serves as a palette and creativity enhancer for artists.
The second involves
...a web of computation, data and physical entities exists that makes human environments more supportive, interesting and safe. Such infrastructure is beginning to make its appearance in domains such as transportation, medicine, commerce and finance, with vast implications for individual humans and societies.
And now we get to his central question:
Is working on classical human-imitative AI the best or only way to focus on these larger challenges? Some of the most heralded recent success stories of ML have in fact been in areas associated with human-imitative AI — areas such as computer vision, speech recognition, game-playing and robotics. So perhaps we should simply await further progress in domains such as these. There are two points to make here. First, although one would not know it from reading the newspapers, success in human-imitative AI has in fact been limited — we are very far from realizing human-imitative AI aspirations. Unfortunately the thrill (and fear) of making even limited progress on human-imitative AI gives rise to levels of over-exuberance and media attention that is not present in other areas of engineering.

Second, and more importantly, success in these domains is neither sufficient nor necessary to solve important IA and II problems.
And he goes on to explore that theme.

Moreover,
...the current focus on doing AI research via the gathering of data, the deployment of “deep learning” infrastructure, and the demonstration of systems that mimic certain narrowly-defined human skills — with little in the way of emerging explanatory principles — tends to deflect attention from major open problems in classical AI. These problems include the need to bring meaning and reasoning into systems that perform natural language processing, the need to infer and represent causality, the need to develop computationally-tractable representations of uncertainty and the need to develop systems that formulate and pursue long-term goals. These are classical goals in human-imitative AI, but in the current hubbub over the “AI revolution,” it is easy to forget that they are not yet solved.
Coming to the end he makes and interesting historical observation:
It was John McCarthy (while a professor at Dartmouth, and soon to take a position at MIT) who coined the term “AI,” apparently to distinguish his budding research agenda from that of Norbert Wiener (then an older professor at MIT). Wiener had coined “cybernetics” to refer to his own vision of intelligent systems — a vision that was closely tied to operations research, statistics, pattern recognition, information theory and control theory. McCarthy, on the other hand, emphasized the ties to logic. In an interesting reversal, it is Wiener’s intellectual agenda that has come to dominate in the current era, under the banner of McCarthy’s terminology. (This state of affairs is surely, however, only temporary; the pendulum swings more in AI than in most fields.)

We need to realize that the current public dialog on AI — which focuses on a narrow subset of industry and a narrow subset of academia — risks blinding us to the challenges and opportunities that are presented by the full scope of AI, IA and II.

This scope is less about the realization of science-fiction dreams or nightmares of super-human machines, and more about the need for humans to understand and shape technology as it becomes ever more present and influential in their daily lives.
His concluding paragraphs:
Moreover, we should embrace the fact that what we are witnessing is the creation of a new branch of engineering. The term “engineering” is often invoked in a narrow sense — in academia and beyond — with overtones of cold, affectless machinery, and negative connotations of loss of control by humans. But an engineering discipline can be what we want it to be.

In the current era, we have a real opportunity to conceive of something historically new — a human-centric engineering discipline.

I will resist giving this emerging discipline a name, but if the acronym “AI” continues to be used as placeholder nomenclature going forward, let’s be aware of the very real limitations of this placeholder. Let’s broaden our scope, tone down the hype and recognize the serious challenges ahead.

No comments:

Post a Comment